Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Microorganisms ; 11(5)2023 May 16.
Article in English | MEDLINE | ID: covidwho-20239725

ABSTRACT

Antibiotic resistance is one of the greatest growing public health threats and a worldwide priority. According to the WHO, drug-resistant diseases may cause 10 million deaths a year by 2050 and have a substantial impact on the global economy, driving up to 24 million people into poverty. The ongoing COVID-19 pandemic has exposed the fallacies and vulnerability of healthcare systems worldwide, displacing resources from existing programs and reducing funding for antimicrobial resistance (AMR) fighting efforts. Moreover, as already seen for other respiratory viruses, such as flu, COVID-19 is often associated with superinfections, prolonged hospital stays, and increased ICU admissions, further aggravating healthcare disruption. These events are accompanied by widespread antibiotic use, misuse, and inappropriate compliance with standard procedures with a potential long-term impact on AMR. Still, COVID-19-related measures such as increasing personal and environmental hygiene, social distancing, and decreasing hospital admissions could theoretically help the AMR cause. However, several reports have shown increased antimicrobial resistance during the COVID-19 pandemic. This narrative review focuses on this "twindemic", assessing the current knowledge of antimicrobial resistance in the COVID-19 era with a focus on bloodstream infections and provides insights into the lessons learned in the COVID-19 field that could be applied to antimicrobial stewardship initiatives.

2.
Front Med (Lausanne) ; 10: 1171283, 2023.
Article in English | MEDLINE | ID: covidwho-2301301
3.
Front Pharmacol ; 14: 1152915, 2023.
Article in English | MEDLINE | ID: covidwho-2300674

ABSTRACT

Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO estimates. Although an intensive treatment plan exists against the causal agent, Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the pathogen puts a large number of global populations at risk. Vaccine which can induce long-term protection is still in the making with many candidates currently in different phases of clinical trials. The COVID-19 pandemic has further aggravated the adversities by affecting early TB diagnosis and treatment. Yet, WHO remains adamant on its "End TB" strategy and aims to substantially reduce TB incidence and deaths by the year 2035. Such an ambitious goal would require a multi-sectoral approach which would greatly benefit from the latest computational advancements. To highlight the progress of these tools against TB, through this review, we summarize recent studies which have used advanced computational tools and algorithms for-early TB diagnosis, anti-mycobacterium drug discovery and in the designing of the next-generation of TB vaccines. At the end, we give an insight on other computational tools and Machine Learning approaches which have successfully been applied in biomedical research and discuss their prospects and applications against TB.

4.
One Health Outlook ; 5(1): 7, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2297308

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) poses a global threat to human, animal, and environmental health. AMR is a technical area in the Global Health Security Agenda initiative which uses the Joint External Evaluation tool to evaluate national AMR containment capacity. This paper describes four promising practices for strengthening national antimicrobial resistance containment capacity based on the experiences of the US Agency for International Development's Medicines, Technologies, and Pharmaceutical Services Program work with 13 countries to implement their national action plans on AMR in the areas of multisectoral coordination, infection prevention and control, and antimicrobial stewardship. METHODS: We use the World Health Organization (WHO) Benchmarks on International Health Regulations Capacities (2019) to guide national, subnational, and facility actions that advance Joint External Evaluation capacity levels from 1 (no capacity) to 5 (sustainable capacity). Our technical approach is based on scoping visits, baseline Joint External Evaluation scores, benchmarks tool guidance, and country resources and priorities. RESULTS: We gleaned four promising practices to achieve AMR containment objectives: (1) implement appropriate actions using the WHO benchmarks tool, which prioritizes actions, making it easier for countries to incrementally increase their Joint External Evaluation capacity from level 1 to 5; (2) integrate AMR into national and global agendas. Ongoing agendas and programs at international, regional, and national levels provide opportunities to mainstream and interlink AMR containment efforts; (3) improve governance through multisectoral coordination on AMR. Strengthening multisectoral bodies' and their technical working groups' governance improved functioning, which led to better engagement with animal/agricultural sectors and a more coordinated COVID-19 pandemic response; and (4) mobilize and diversify funding for AMR containment. Long-term funding from diversified funding streams is vital for advancing and sustaining countries' Joint External Evaluation capacities. CONCLUSIONS: The Global Health Security Agenda work has provided practical support to countries to frame and conduct AMR containment actions in terms of pandemic preparedness and health security. The WHO benchmarks tool that Global Health Security Agenda uses serves as a standardized organizing framework to prioritize capacity-appropriate AMR containment actions and transfer skills to help operationalize national action plans on AMR.

5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2293786

ABSTRACT

Microbial contamination in the hospital environment is a major concern for public health, since it significantly contributes to the onset of healthcare-associated infections (HAIs), which are further complicated by the alarming level of antimicrobial resistance (AMR) of HAI-associated pathogens. Chemical disinfection to control bioburden has a temporary effect and can favor the selection of resistant pathogens, as observed during the COVID-19 pandemic. Instead, probiotic-based sanitation (probiotic cleaning hygiene system, PCHS) was reported to stably abate pathogens, AMR, and HAIs. PCHS action is not rapid nor specific, being based on competitive exclusion, but the addition of lytic bacteriophages that quickly and specifically kill selected bacteria was shown to improve PCHS effectiveness. This study aimed to investigate the effect of such combined probiotic-phage sanitation (PCHSφ) in two Italian hospitals, targeting staphylococcal contamination. The results showed that PCHSφ could provide a significantly higher removal of staphylococci, including resistant strains, compared with disinfectants (-76%, p < 0.05) and PCHS alone (-50%, p < 0.05). Extraordinary sporadic chlorine disinfection appeared compatible with PCHSφ, while frequent routine chlorine usage inactivated the probiotic/phage components, preventing PCHSφ action. The collected data highlight the potential of a biological sanitation for better control of the infectious risk in healthcare facilities, without worsening pollution and AMR concerns.


Subject(s)
Bacteriophages , COVID-19 , Cross Infection , Probiotics , Humans , Sanitation/methods , Chlorine , Pandemics , Cross Infection/prevention & control , Cross Infection/microbiology , Staphylococcus , Delivery of Health Care , Probiotics/therapeutic use
6.
Front Med (Lausanne) ; 10: 1087446, 2023.
Article in English | MEDLINE | ID: covidwho-2265618

ABSTRACT

Objectives: High frequency of antimicrobial prescription and the nature of prolonged illness in COVID-19 increases risk for complicated bacteriuria and antibiotic resistance. We investigated risk factors for bacteriuria in the ICU and the correlation between antibiotic treatment and persistent bacteria. Methods: We conducted a prospective longitudinal study with urine from indwelling catheters of 101 ICU patients from Uppsala University Hospital, Sweden. Samples were screened and isolates confirmed with MALDI-TOF and whole genome sequencing. Isolates were analyzed for AMR using broth microdilution. Clinical data were assessed for correlation with bacteriuria. Results: Length of stay linearly correlated with bacteriuria (R2 = 0.99, p ≤ 0.0001). 90% of patients received antibiotics, primarily the beta-lactams (76%) cefotaxime, piperacillin-tazobactam, and meropenem. We found high prevalence of Enterococcus (42%) being associated with increased cefotaxime prescription. Antibiotic-susceptible E. coli were found to cause bacteriuria despite concurrent antibiotic treatment when found in co-culture with Enterococcus. Conclusion: Longer stays in ICUs increase the risk for bacteriuria in a predictable manner. Likely, high use of cefotaxime drives Enterococcus prevalence, which in turn permit co-colonizing Gram-negative bacteria. Our results suggest biofilms in urinary catheters as a reservoir of pathogenic bacteria with the potential to develop and disseminate AMR.

7.
J Infect Public Health ; 16(4): 611-617, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2278043

ABSTRACT

World is in the middle of the pandemic (COVID-19), caused by SARS-COV-2 virus, which is a significant global health crisis after Spanish influenza in the beginning of 20th century. Progressive drastic steps have been enforced to minimize the transmission of the disease. Likewise, in the current years, antimicrobial resistance (AMR) has been referred as one of the potential perils to the global economy and health; however, it is now veiled under the present pandemic. During the current pandemic, AMR to available frontline antibiotics may prove fatal and life threatening to bacterial and fungal infections during routine procedures like elective surgery, C-sections, etc. Currently, a swift elevation in multidrug-resistant organisms (MDROs), like carbapenem-resistant New Delhi metallo-ß-lactamase (NDM)-producing Acinetobacter baumannii, Enterobacterales, extended-spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), multi-triazole-resistant Aspergillus fumigatus and pan-echinocandin-resistant Candida glabrata has been seen. Thereupon, the global outbreak of COVID-19 also offers some important ramification for developing antimicrobial drug resistance. This article aims to highlights episodes and aspects of AMR prevalence, impact of management and mismanagement of COVID-19 crisis, hospital settings, community, environment, and travel on the AMR during the current pandemic.


Subject(s)
COVID-19 , Influenza, Human , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Drug Resistance, Bacterial , Microbial Sensitivity Tests , SARS-CoV-2 , Klebsiella pneumoniae
8.
Front Microbiol ; 14: 1094184, 2023.
Article in English | MEDLINE | ID: covidwho-2274463

ABSTRACT

Since the WHO declared the COVID-19 pandemic in March 2020, the disease has spread rapidly leading to overload of the health system and many of the patients infected with SARS-CoV-2 needed to be admitted to the intensive care unit (ICU). Around 10% of patients with the severe manifestation of COVID-19 need noninvasive or invasive mechanical ventilation, which represent a risk factor for Acinetobacter baumannii superinfection. The 64 A. baumannii isolates were recovered from COVID-19 patients admitted to ICU at General Hospital "Dr Laza K. Lazarevic" Sabac, Serbia, during the period from December 2020 to February 2021. All patients required mechanical ventilation and mortality rate was 100%. The goal of this study was to evaluate antibiotic resistance profiles and virulence potential of A. baumannii isolates recovered from patients with severe form of COVID-19 who had a need for mechanical ventilation. All tested A. baumannii isolates (n = 64) were sensitive to colistin, while resistant to meropenem, imipenem, gentamicin, tobramycin, and levofloxacin according to the broth microdilution method and MDR phenotype was confirmed. In all tested isolates, representatives of international clone 2 (IC2) classified by multiplex PCR for clonal lineage identification, bla AmpC, bla OXA-51, and bla OXA-23 genes were present, as well as ISAba1 insertion sequence upstream of bla OXA-23. Clonal distribution of one dominant strain was found, but individual strains showed phenotypic differences in the level of antibiotic resistance, biofilm formation, and binding to mucin and motility. According to PFGE, four isolates were sequenced and antibiotic resistance genes as well as virulence factors genes were analyzed in these genomes. The results of this study represent the first report on virulence potential of MDR A. baumannii from hospital in Serbia.

10.
Int J Environ Res Public Health ; 20(1)2022 12 23.
Article in English | MEDLINE | ID: covidwho-2240245

ABSTRACT

As a result of the COVID-19 pandemic, as well as other outbreaks, such as SARS and Ebola, bats are recognized as a critical species for mediating zoonotic infectious disease spillover events. While there is a growing concern of increased antimicrobial resistance (AMR) globally during this pandemic, knowledge of AMR circulating between bats and humans is limited. In this paper, we have reviewed the evidence of AMR in bats and discussed the planetary health aspect of AMR to elucidate how this is associated with the emergence, spread, and persistence of AMR at the human-animal interface. The presence of clinically significant resistant bacteria in bats and wildlife has important implications for zoonotic pandemic surveillance, disease transmission, and treatment modalities. We searched MEDLINE through PubMed and Google Scholar to retrieve relevant studies (n = 38) that provided data on resistant bacteria in bats prior to 30 September 2022. There is substantial variability in the results from studies measuring the prevalence of AMR based on geographic location, bat types, and time. We found all major groups of Gram-positive and Gram-negative bacteria in bats, which are resistant to commonly used antibiotics. The most alarming issue is that recent studies have increasingly identified clinically significant multi-drug resistant bacteria such as Methicillin Resistant Staphylococcus aureus (MRSA), ESBL producing, and Colistin resistant Enterobacterales in samples from bats. This evidence of superbugs abundant in both humans and wild mammals, such as bats, could facilitate a greater understanding of which specific pathways of exposure should be targeted. We believe that these data will also facilitate future pandemic preparedness as well as global AMR containment during pandemic events and beyond.


Subject(s)
COVID-19 , Chiroptera , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Pandemics , COVID-19/epidemiology , Drug Resistance, Bacterial , Gram-Negative Bacteria , Gram-Positive Bacteria , Zoonoses/epidemiology , Bacteria
11.
EClinicalMedicine ; 57: 101848, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2233669

ABSTRACT

Background: Despite bacterial coinfection rates of less than 10%, antibiotics are prescribed to an estimated 75% of patients with COVID-19, potentially exacerbating antimicrobial resistance. We estimated the associations of COVID-19 cases and vaccinations with global antibiotic sales during the first two years of the COVID-19 pandemic. Methods: We obtained monthly data on broad-spectrum antibiotic sales volumes (cephalosporins, penicillins, macrolides, and tetracyclines) in 71 countries during March 2020-May 2022 from the IQVIA MIDAS® database. These data were combined with country-month-level COVID-19 case and vaccination data from Our World in Data. We used least squares (pooled) and fixed-effects panel data regression models, accounting for country characteristics, to estimate the associations between antibiotic sales volumes and COVID-19 cases and vaccinations per 1000 people. Findings: Sales of all four antibiotics fell sharply during April and May 2020, followed by a gradual rise to near pre-pandemic levels through May 2022. In fixed-effects regression models, a 10% increase in monthly COVID-19 cases was associated with 0.2%-0.3% higher sales of cephalosporins, 0.2%-0.3% higher sales of penicillins, 0.4%-0.6% higher sales of macrolides, and 0.3% higher sales of all four antibiotics combined per 1000 people. Across continents, a 10% increase in monthly COVID-19 cases was associated with 0.8%, 1.3%, and 1.5% higher macrolides sales in Europe, North America, and Africa respectively. Sales of other antibiotics across continent were also positively associated with COVID-19 cases, although the estimated associations were smaller in magnitude. No consistent associations were observed between antibiotic sales and COVID-19 vaccinations. Results from pooled regression analysis were similar to those from the fixed-effects models. Interpretation: Antibiotic sales were positively associated with COVID-19 cases globally during 2020-2022. Our findings underline that antibiotic stewardship in the context of COVID-19 remains essential. Funding: Bill & Melinda Gates Foundation.

12.
Antibiotics (Basel) ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2232922

ABSTRACT

The emergence of COVID-19 infection led to the indiscriminate use of antimicrobials without knowing their efficacy in treating the disease. The gratuitous use of antibiotics for COVID-19 treatment raises concerns about the emergence of antimicrobial resistance (AMR). In this systematic review, we performed a thorough systematic search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of scientific databases (Scopus, Web of Science, and PubMed) to identify studies where antibiotics were prescribed to treat COVID-19 (December 2019 to December 2021). Of 970 identified studies, 130 were included in our analyses. Almost 78% of COVID-19 patients have been prescribed an antibiotic. Cephalosporins were the most prescribed (30.1% of patients) antibiotics, followed by azithromycin (26% of patients). Antibiotics were prescribed for COVID-19 patients regardless of reported severity; the overall rate of antibiotic use was similar when comparing patients with a severe or critical illness (77.4%) and patients with mild or moderate illness (76.8%). Secondary infections were mentioned in only 11 studies. We conclude that concerns related to COVID-19 and the lack of treatment strategy led to the overuse of antibiotics without proper clinical rationale. Based on our findings, we propose that antimicrobial stewardship should be retained as a priority while treating viral pandemics.

13.
Indian J Med Microbiol ; 41: 19-24, 2023.
Article in English | MEDLINE | ID: covidwho-2179612

ABSTRACT

PURPOSE: Antimicrobial resistance [AMR] has emerged as a global and national priority and establishing an effective surveillance system for antimicrobial resistance is an essential prerequisite for generating evidence for informed policymaking at both national and state levels. METHODS: Twenty-four laboratories were enrolled after assessment in the WHO-IAMM Network for Surveillance of Antimicrobial Resistance in Delhi [WINSAR-D]. The NARS- NET standard operating procedures were adopted along with its priority pathogen lists and antibiotic panels. The members were trained to use WHONET software and monthly data files were collected, collated, and analyzed. RESULTS: Multiple logistic issues such as procurement, erratic supply of consumables, non-availability of standard guidelines, lack of automated systems, high workload and low manpower were reported by the majority of member laboratories. Microbiological challenges such as differentiation between colonization and pathogen in absence of patient details, lack of confirmation of resistance, identification of isolates and lack of dedicated computer and genuine windows software for data were common to most laboratories. The total number of isolates of priority pathogens in 2020 was 31,463. Of these, 50.1% isolates were from urine 20.6% were from blood and 28.3% were from pus aspirate and other sterile body fluids. High levels of resistance were observed for all antibiotics. CONCLUSION: There are many challenges in generating quality AMR data in lower-middle-income countries. There is a need for resource allocation and capacity building at all levels to ensure the collection of quality assured data.


Subject(s)
Anti-Bacterial Agents , Body Fluids , Humans , Drug Resistance, Bacterial , Capacity Building , India
14.
BMC Med Res Methodol ; 22(1): 330, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2196052

ABSTRACT

BACKGROUND: Identifying mechanisms to maintain CBPR studies during an infectious disease pandemic is vital. The current paper describes the changes in methods and processes conducted within a CBPR mixed-methods study to a virtual setting during the novel coronavirus (COVID-19) pandemic. METHOD: The DC Community Organizing for Optimal Culinary Knowledge study with Heart (DC COOKS with Heart) was designed to assess the feasibility of a dietary behavior intervention among African-American adults that are at risk for cardiovascular disease (CVD). The study is under the umbrella of an ongoing CBPR study and community advisory board that facilitates community involvement in study design and promotes ongoing engagement with community members and leaders. The study population for D.C. COOKS with Heart consists of adult African-American individuals who live in two low-resource neighborhoods in Washington, D.C., which were impacted disproportionately by COVID. Eligible study participants who previously participated in the DC CHOC community-based studies were contacted to participate in Phase 1. The quantitative part of the mixed-methods included survey data collection. RESULTS: Due to the pandemic, the mode of data collection for surveys changed from self-administered face-to-face to internet-based. All virtual study procedures were conducted between March and April, 2021. Anticipated benefits of the virtual setting included participant safety during the pandemic, ease of logistics for participants. Anticipated challenges included administration of electronic devices to participants, research team training, and potential threats to established trust related to the privacy and confidentiality of participants. CONCLUSION: The transition to a virtual setting for study procedures in a mixed-methods study was conducted successfully in terms of recruitment, retention of participants, and training of research team members. The virtual transition required established and ongoing engagement through the community advisory board and CBPR practices, institutional support through virtual research policies, collaborations with information technology-based teams, and equipment administration for the study. TRIALS REGISTRATION: NCT04305431 . Registered on March 12, 2020.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Adult , Community-Based Participatory Research/methods , COVID-19/epidemiology , Pandemics , Black or African American , Surveys and Questionnaires , Diet
15.
Antibiotics (Basel) ; 12(1)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2199682

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant superbug that causes various types of community- and hospital-acquired infectious diseases. The current study was aimed to see the genetic characteristics and gene expression of MRSA isolates of nosocomial origin. A total of 221 MRSA isolates were identified from 2965 clinical samples. To identify the bacterial isolates, the clinical samples were inoculated on blood agar media plates first and incubated at 37 °C for 18-24 h. For further identification, the Gram staining and various biochemical tests were performed once the colonies appeared on the inoculated agar plates. The phenotypic identification of antibiotic susceptibility patterns was carried out using Kirby-Bauer disk diffusion method by following the Clinical and Laboratory Standards Institute (CLSI) 2019 guidelines. The biofilm-producing potentials of MRSA were checked quantitatively using a spectrophotometric assay. All strains were characterized genotypically by SCCmec and agr typing using the specific gene primers. Furthermore, a total of twelve adhesion genes were amplified in all MRSA isolates. MRSA was a frequently isolated pathogen (44% community acquired (CA)-MRSA and 56% hospital acquired (HA)-MRSA), respectively. Most of the MRSA isolates were weak biofilm producers (78%), followed by moderate (25%) and strong (7%) biofilm producers, respectively. Prominent adhesion genes were clfB (100%), icaAD (91%), fib (91%), sdrC (91%) followed by eno (89%), fnbA (77%), sdrE (67%), icaBC (65%), clfA (65%), fnbB (57%), sdrD (57%), and cna (48%), respectively. The results of the current study will help to understand and manage the spectrum of biofilm-producing MRSA-associated hospital-acquired infections and to provide potential molecular candidates for the identification of biofilm-producing MRSA.

16.
Antibiotics (Basel) ; 11(12)2022 Dec 16.
Article in English | MEDLINE | ID: covidwho-2163215

ABSTRACT

Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new ß-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.

17.
Journal of Pharmaceutical Negative Results ; 13:1307-1317, 2022.
Article in English | EMBASE | ID: covidwho-2156334

ABSTRACT

Antimicrobial resistance (AMR) is a serious global warning to social wellbeing. Antimicrobial stewardship Intervention is evident to provide a good effect on AMR. Antimicrobial Stewardship Programs (ASPs) have been established to minimize the usage of antibiotics, antibiotic resistance, and healthcare expenditure. Prospective audits with feedback, formulary restriction/preauthorization along with many other supportive elements are found effective techniques of antimicrobial stewardship programme. However, the proportional effect of different techniques is unclear. This ASP strategies utilization is compared in hospital setting and adult hospital units implementing ASP have provided much evidence demonstrating their value. This study includes the effectiveness of various explicit AMS strategies, measuring the outcome in various clinical setups such as reducing antibiotic resistance and antibiotic use.The death toll from COVID-19 is the highest of any other respiratory virus outbreak but Multiple Drug Resistant (MDR) and deadly resistant pathogens outbreaks could be at any point of time.Even in this present antibiotic era required primarily require combat it andstrong vigilance is also desired. The primary objective of this study is to enhance patient care and to lower medical expenses, but the ultimate objective is to safeguard already available and newly developed antibiotics against the threat of AMR. It has been noted that Prospective Audit and Feedback (PAF) intervention is one of the most often employed strategies among all other interventions of AMS. Although this is time-taking, it is accepted by physicians for more than formulary restrictions and pre-authorization procedures. There have been several digital initiatives to support antimicrobial stewardship (AMS), while they have been concentrated on individual interventions.Pre-authorization or recommended formulary limitation was found in 31% of all trials. 20% of these studies implemented this intervention independently, and many trials were also undertaken in conjunction with other interventions mostly in addition to training and education. Using the available pool information, we observed in various strategies a significant reduction in antimicrobial resistance and a reduced Days of Therapy (DOT)/Length of Treatment (LOT) ratio. Formulary restriction limited the use of broad-spectrum antibiotics without any major causality. Copyright © 2022 Wolters Kluwer Medknow Publications. All rights reserved.

18.
Biotechnology & Biotechnological Equipment ; 36(1):933-941, 2022.
Article in English | Web of Science | ID: covidwho-2123012

ABSTRACT

Antimicrobial resistance occurs naturally but is enhanced by human activities related to the use of antibiotics (for example, excessive use and misuse of antimicrobial agents). Our study aimed to gain insight into the knowledge, attitudes and practice of the use of antibiotics among the general Bulgarian population. A cross-sectional survey was conducted during a 4-week period in April-May 2022. Our sample included 516 participants of whom 398 (77.1%) were females, mainly Bulgarians by ethnic group, with a university degree (master degree 58.9%;bachelor degree 17.2%) and living in big regional cities (91.5%). The main health reasons that respondents from all age groups share for taking antibiotics in the last year were bronchitis, sore throat, infections, including urinary tract infections, and pneumonia. Interestingly, about 14% of the respondents have treated the SARS-2-coronavirus infection with antibiotics. Our results highlighted existing attitudes toward antibiotic use in the surveyed sample. Overall, respondents from all age groups showed similarities in their attitudes toward treatment with antibiotics. People's behavior and actions toward antibiotics play an important role in the spread of antimicrobial resistance. Our study provided some important insights concerning the knowledge and practices related to antibiotic use and antimicrobial resistance in the Bulgarian population. In general, good knowledge of antibiotic use and antimicrobial resistance was evident among the surveyed sample.

19.
Int J Infect Dis ; 111: 322-325, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113675

ABSTRACT

Microbe exposure to pharmaceutical and non-pharmaceutical agents plays a role in the development of antibiotic resistance. The risks and consequences associated with extensive disinfectant use during the COVID-19 pandemic remain unclear. Some disinfectants, like sanitizers, contain genotoxic chemicals that damage microbial DNA, like phenol and hydrogen peroxide. This damage activates error-prone DNA repair enzymes, which can lead to mutations that induce antimicrobial resistance. Public health priority programs that have faced drug-resistance challenges associated with diseases, such as tuberculosis, HIV, and malaria, have given less attention to risks attributable to the COVID-19 pandemic. Pathogen-specific programs, like the directly observed treatment strategy designed to fight resistance against anti-tuberculosis drugs, have become impractical because COVID-19 restrictions have limited in-person visits to health institutions. Here, we summarized the key findings of studies on the current state of antimicrobial resistance development from the perspective of current disinfectant use. Additionally, we provide a brief overview of the consequences of restricted access to health services due to COVID-19 precautions and their implications on drug resistance development.


Subject(s)
COVID-19 , Drug Resistance, Bacterial , Anti-Bacterial Agents/therapeutic use , Antitubercular Agents , Humans , Pandemics , SARS-CoV-2
20.
Front Mol Biosci ; 9: 976705, 2022.
Article in English | MEDLINE | ID: covidwho-2022800

ABSTRACT

The antimicrobial resistance (AMR) crisis from bacterial pathogens is frequently emerging and rapidly disseminated during the sustained antimicrobial exposure in human-dominated communities, posing a compelling threat as one of the biggest challenges in humans. The frequent incidences of some common but untreatable infections unfold the public health catastrophe that antimicrobial-resistant pathogens have outpaced the available countermeasures, now explicitly amplified during the COVID-19 pandemic. Nowadays, biotechnology and machine learning advancements help create more fundamental knowledge of distinct spatiotemporal dynamics in AMR bacterial adaptation and evolutionary processes. Integrated with reliable diagnostic tools and powerful analytic approaches, a collaborative and systematic surveillance platform with high accuracy and predictability should be established and implemented, which is not just for an effective controlling strategy on AMR but also for protecting the longevity of valuable antimicrobials currently and in the future.

SELECTION OF CITATIONS
SEARCH DETAIL